Category Archives: Gadgets

Maps of various things

These are  really neat.

 

This map shows what is on the other side of the world from where you are standing.  For the most part it will probably be water.

This map shows what is on the other side of the world from where you are standing.  For the most part it will probably be water.

This map shows the world divided into 7 sections (each with a distinct color) with each section containing 1 billion people.

This map shows the world divided into 7 sections (each with a distinct color) with each section containing 1 billion people.

This map shows the most photographed places in the world.

This map shows the most photographed places in the world.

This map shows the longest straight line you can sail.  It goes from Pakistan all the way to Kamchatka Peninsula in Russia for a total of 20,000 miles.

This map shows the longest straight line you can sail.  It goes from Pakistan all the way to Kamchatka Peninsula in Russia for a total of 20,000 miles.

This map shows the countries that heavily restricted Internet access in 2013.

This map shows the countries that heavily restricted Internet access in 2013.

This map shows the countries (in blue) where people drive on the left side of the road.

This map shows the countries (in blue) where people drive on the left side of the road.

This map shows how much space the United States would occupy on the moon.

This map shows how much space the United States would occupy on the moon.

This map shows countries (in white) that England has never invaded.  There are only 22 of them.

This map shows countries (in white) that England has never invaded.  There are only 22 of them.

This map shows (in white) where 98 percent of Australia's population lives.

This map shows (in white) where 98 percent of Australia’s population lives.

This map shows (in red, orange, and yellow) the world's largest donors of foreign aid with red being the biggest donor.

This map shows (in red, orange, and yellow) the world’s largest donors of foreign aid with red being the biggest donor.

This map shows (in blue) places where Google street view is available.

This map shows (in blue) places where Google street view is available.

This map highlights the countries (in red and orange) with the most skyscrapers.

This map highlights the countries (in red and orange) with the most skyscrapers.

This is a map of the highest paid public employees in the United States.

This is a map of the highest paid public employees in the United States.

This is a map of the all the rivers in the United States.

This is a map of the all the rivers in the United States.

This is a map of 19th century shipping lanes that outlines the continents.

This is a map of 19th century shipping lanes that outlines the continents.

These are all the rivers that feed into the Mississippi River.

These are all the rivers that feed into the Mississippi River.

The line in this map shows all of the world's Internet connections in 1969.

The line in this map shows all of the world’s Internet connections in 1969.

It may not come as a surprise but more people live inside the circle than outside of it.

It may not come as a surprise but more people live inside the circle than outside of it.

Apparently you can't get Big Macs everywhere.  This map shows (in red) the countries that have McDonalds.

Apparently you can’t get Big Macs everywhere.  This map shows (in red) the countries that have McDonalds.

And this map shows all the places where you can get eaten by a Great White shark!

And this map shows all the places where you can get eaten by a Great White shark!

And this is what the world would look like if all the countries with coast lines sank.

And this is what the world would look like if all the countries with coast lines sank.

Germany’s 10 Huge Lessons About Solar Energy

Check this out from Germany who have embraced solar energy. Why can’t we? This is a must read. Click here for the full article or read an excerpt below.

 

http://climatecrocks.com/2013/02/11/germanys-10-huge-lessons-about-solar-energy/

 

Electricity suppliers get their electricity on the grid through a bidding process. The suppliers that can sell their electricity to the grid for cheapest win. Because the costs of solar and wind power plants are essentially just in the process of building them (the fuel costs are $0 and the maintenance costs are negligible), they can outbid pretty much every other source of power. As a result, 1) they win the bids when they produce electricity; 2) they drive down the price of wholesale electricity.

Because solar power is often produced when electricity demand is the greatest (and electricity is, thus, the least available and most expensive), it brings down the price of electricity even more than wind.

 

 

Personal Selling

Found a neat website on selling techniques. Click here for the article.

Biommimicry, solutions derived from nature

I love this interview. Unbelievable information. Click here for the source or read the article below. Wow! I guess I’m an optimist because I’m trying to share best practices for others to develop. Who knew that I would learn something about myself from an interview. Please share these wonderful ideas with others to further development and even more importantly implement. Thanks.

 

Interview with Biomimicry 3.8 Co-Founder Janine Benyus

Updated 3/16/14

Background Info
What if rather than working to tame, dominate and take from nature, we listened, looked and learned from its 3.8 billion years of sustainable designs? This is the basic tenet of biomimicry and Janine Benyus, its champion.

Janine Benyus is a natural sciences writer, innovation consultant, and author of six books, including her latest – Biomimicry: Innovation Inspired by Nature. Since its 1997 release, Janine has evolved the practice of biomimicry, consulting with sustainable businesses and conducting seminars about what we can learn from the genius that surrounds us. In 2005, Janine founded The Biomimicry 3.8 Institute , a nonprofit organization based in Missoula, MT. The Institute’s mission is to nurture and grow a global community of people who are learning from, emulating, and conserving life’s genius to create a healthier, more sustainable planet. Water Chronicles publisher Josée Dechêne spoke with Janine over the phone on February 17. Below is an abridged transcription of the interview as well a full audio recording.

Related Water Chronicles Stories
 Sustainable Building in a Changing World – A panel discussion – 4/30/2008
 Biomimicry – Backgrounder – 4/28/2008

Audio Interview – 28 min.

Interview Transcription

First, can you give our viewers a very simple explanation of biomimicry?
Biomimicry is learning from, and emulating, nature’s designs in order to create a more sustainable world. It’s literally inventors who are looking to nature to come up with, to be inspired by, to find greener ways to do everything including cleaning, storing, and transporting water.

What are some examples you can give us as related to water?
I’ll give you some case studies: there is a Danish company called Aquaporin who is making a filter which does forward osmosis. The concept is based on the way our body cells handle water. The red blood cells have pores in them, called aquapores. They’re hourglass shaped pores. The water molecules are attracted to these pores, they line up, go through that hourglass shaped pore. They literally preferentially want to get out of the cell. They get pulled out by the power of the pore which attracts the water molecules which get squirted through in a line.

This is unlike the way we desalinate water for instance, we push water against a membrane and the salt stays on one side and the water goes through and it take s a lot of energy. In aquaporin, water molecules naturally get pulled through this pore, leaving things on the other side. It’s not a push, it’s forward osmosis. It increases the rate of desalination, about 100 times. It’s very interesting. So that’s one thing in the filtering space.

There’s also a company called Baleen Filters. Baleen refers to the tooth-like, hard comb that’s in a whale’s mouth. It’s the way that it squeezes and pulls water through in a reverse flow. It captures plankton. And because of the reverse flow of water, an intake then an outtake, it strains plankton out of the water. It’s a self-cleaning, non-clogging filter.

That idea has been mimicked in a wastewater treatment machine, mostly used in food processing. Things like capturing grape skins in the making of wine, and concentrating the solids so you can recapture as much water in the process as possible. Squeezing all the water out of the solid is pretty important any time you’re working in food processing.

In one of your TED presentations, you were talking about the scaling problem in pipes . Can you tell us about that?
One of the things that creates problems is the toxicity in cleaning pipes and the need for a lot energy in pushing water. Minerals in water build up on the inside of pipes, called scaling. In your home you might notice calcium and carbonate, a whitish mineral that builds up. As pipes get more occluded, there is a smaller diameter aperture for water to go through. Companies put toxins in, or shut down operations, and dig them up, or have stronger motors to push it through. Either way it’s a sustainability issue.

The calcium carbonate buildup on the inside of pipes is very similar to the way seashells form. They crystallize out of water, but in the molluscs’ case, or seashells, they’re all made of calcium carbonate. It’s the same process. The calcium and carbonate ions come down and crystallize. The mollusc releases a protein that creates a sheet. There is a landing site and calcium and carbonate come down and crystallize, and then the shell creates a stop protein because it doesn’t want its size to be infinite. This protein comes out and adheres to the growing face of the crystal and stops the crystallization. This has been mimicked in a product called TPA (Thermal Polyaspartate). It is put into pipes and there’s a small amount of adhering to the pipe, and the TPA stops it.

Is this already in production?
Yes. Another thing is the fog harvesting material that mimics the Namibian beetle. The Namibian beetle is a beetle in the namib desert whose outer wing cover does a headstand on the dew in the morning. The fog comes in and the beetle gathers the fog. This is hard to do! It catches fog 10 times better than our fog catching nets.

Water-loving, little bumps on the shell and the tips are like magnets for water, they are hydrophyllic, while the sides of the bump are hydrophobic. The tips grab a hold of the fog particles, and another lands, and another, then it gets big enough to slide and gets pulled by the waxy sides of the bumps, and it runs down the channels, gravity takes over basically, and it runs into the critters mouth. It turns out this is a very smart way to do things. They’ve mimicked that by making cheaper plastic that have a checkerboard pattern with hydrophilic squares next to hydrophobic squares.

Can you harvest quite a bit of water with these sheets?
Yes, about 10 times more water than our fog nets. MIT has created the plastic Reuben, the last name. I’m not sure who if anyone is producing them commercially for bug harvesting. This is maybe one of those things that’s in the research stage.

I’ve been reading about vertical farming, which is expanding in the US. I would imagine that other biomimicry models would push these farms even further.
Absolutely. One of the ways it can be very helpful is in greenhouses. Greenhouses now, think of the Sahara forest project which uses salt water greenhouses. A pipe – this can only happen if you’re near an ocean with cold, cold water – a pipe pulls water up from the ocean, goes into the greenhouse; the greenhouse is very, very hot. The pipe sweats, and that water then, if you have the Namibian beetle around the pipe, or plastic with that pattern, the sweating of the drops is quickly wicked away by the waxy parts of the pattern and you’re able to gather even more water. Instead of the sweating drops just sitting there, they get wicked away so new sweating drops can form. So, it’s getting fog – it’s a different technique, but there is humidity which condenses in the cold and it’s a way of getting fresh water, by pulling the humidity out of the air. The material helps create a steady stream of water. Those are interesting.

What about fixing stuff we’ve corrupted, like too much phosphate creating blue-green algae. Are there any hopes from biomimicry?
This idea of having too much phosphorous in agriculture fields, for instance, that’s the real problem. At the same time we’re running out of phosphorous, it’s a mined material. There’s peak oil and we’re running out of oil, but there’s peak phosphorous too. One of the things that is very promising there is the use of mycorrhizal fungi. These are helper fungi. More than 80% of all plants in the world have helper fungus at their roots. The fungus helps the plant – the plants can’t get phosphorous on its own, it’s not bio-available, so the fungus gets it for the plant, transfers it to the plant, wraps around the roots, and the plant transports sugars, carbons, to the fungus because the fungus is underground and cant’ photosynthesize, it can’t see the sun.

So what happens when we put too much phosphorous on farm fields, we tell the fungus it’s not needed. So we have farm fields where the fungus could be providing the plants with the phosphorous, and instead we’re providing it. Part of the solution is to stop using so much phosphorous by finding other ways to get the plant phosphorous. It’s in the soil, it’s just not in a bio-available form to the plant unless they have this fungus. That’s why most species in the wild have these fungal helpers. They’re very common except in agricultural fields because we provide the phosphorous. So let’s mimic the helper community. Let’s create conditions conducive to the helper community.

What about chemicals in our water, do you have any ideas?
One of the things nature is very good at is what I would call concentrating the miniscule; the very, very small. We’re the opposite. We go somewhere and mine. We find concentrations of gold, say, and we mine that. Then we dissipate those metal across – and little bits of gold are everywhere for metals we mine and dissipate. Once they’re in very small amounts, we don’t think of mining them. They’re in water and we’re like, we don’t know how to get them.

Life, is actually very specific about getting chelation – you’ll have heard of it in a medical context where people will take chelatores which are drugs that pulls heavy metals out of the body. In the natural world chelation is happening all the time. There are molecules that are called siderophore. Antibodies grab on to foreign objects, they’ve got receptors and grab on to foreign objects in the body. Siderophores are molecule that grab onto particular ions of metal. They’re very specific. There’s a siderophore for gold, mercury, iron.

There was a company called mr3 that was making a filter (they’re no longer in business due to management issues but it was a good idea). They were making these mining operations in a box. They have filters – imagine a box with filters in it and the filters are like pieces of bread, slices of bread in a bread box. If each slice was a filter, and each filter was mesh coated with siderophores, there’d be filters for gold, mercury, iron, you’d put wastewater through that – like a river which had metals in it – and the metals would begin to build up in a very specific way in each of these filters, and you could wash, or electrospin, the filters, and pull recoverable amounts, valuable amounts, of metals. You’re basically mining wastewater. Unfortunately mr3 didn’t make it. But I still think it’s an excellent idea. Using the specificity of something like siderophores, you can call it the specific chelating powers that organisms have, we should be mimicking those to actually think of remediation of water and mining.

The reason we haven’t done that is we have a really hard time with what are called mixed-media streams – water that has a lot of metals in it. We don’t know how to grab them. And turn them back into something valuable. I think that light specificity, and any kind of impurities in water, and think of impurities like phosphorous – another example, is there a way to gather and concentrate phosphorous in water.

We have a consulting company for 16 yrs called biomimicry 3.8, and we work with companies to read in biological literature and see what in the natural world concentrates phosphorous for its survival. We find chemistry or processing or a clue that would allow an inventor to say aha that’s a great idea for concentrating phosphorous in water.

Unfortunately – it would be great if we had the money to just sit here and solve these problems – if we had a fund to research the problem that needs to be done. The way the world works – we have to wait for a client to pay us to do it. The research is quite voluminous; we go through biological literature, looking for some organism who has concentrated files for us.

You organize student challenges. Have you gotten good results from it?
If you look at our student design challenge last year, it was about water. Actually a group of students from Canada, from Toronto I think, they came up with a solution to a problem that was unknown to me – It turns out that the leakage of pipes is actually a huge, huge problem. How much water is just leaked away after being treated? So they looked into what causes the cracks in the pipes. One of the major things is that air gets trapped in water and builds up into tiny air bubbles which gets pushed all together and blob together to create these bubbles.

The bubbles create a back pressure, and as the pumps are pushing against these sort of burping bubbles of air, it creates pressure that cracks the pipes. So pipes have these mechanical valves that allow the water to get released, but the valves are prone to breaking, rusting, and are expensive to operate.

So these students looked at fish gills. There are pictures of them on the site; it’s really a brilliant thing. Fish gills: think about it, they take oxygen from water. How? How do they take breathable air out of water? They mimicked the fish gill in a very simple passive device which could be put in pipes, not mechanical, no valves, you slide it into the pipe, and it’s a membrane that works like fish gills that allows air to bubble out of the pipes; it’s just really, really brilliant. They’re engineering students. They were going to try to take their invention to municipalities to try and sell it.

Just one last question – are you an optimist? Do you think things are moving fast enough to counteract how we’re destroying the earth?
Am I an optimist…I think optimism is a choice. If you read, if you know what’s going on with the environmental assaults on our planet and the glacial political will…glacially slow political will, you have a lot of reasons to be pessimistic. You really need to choose optimism.

I choose optimism so that i get up every day and work to find solutions. I happen to work in a world in which there are a lot of people looking for a solution. You don’t know about the solutions yet, because they’re not really talked about, but i spend my whole life collecting solutions. I know about all the solutions that are out there. I know about all the people who are pushing to get these new innovations put into place. It’s not a question of whether we’ll start to turn the corner, but when. And how many species will go extinct, and how many regimes will flip over, how many ecological regimes will be degraded to the point of no return.

It’s a question of – I see us heading toward an evolutionary hole. I don’t think all of us, all species, are going to make it through that hole. I think we’re going to lose quite a bit. I don’t even know if we’re going to make it through there. I’m heading for there, and I’m trying to get through there, and I’m trying to get as many species as possible through there with us.

If you live in your head and wring your hands about this, it’s not going to help. What people need to do, we’ve spent a lot of time in the environmental movement describing the problem space, and that has been very helpful to alerting people to the issues, but if we spent a fraction of the time literally working in the solution space, imagine with all the NGOs who are now protest NGOs would start to be invention NGOs. That’s where optimism is. If you aren’t in the solution space, you cannot be optimistic. Because I live my life in the solution space, I choose to be optimistic.

 

 

Red Hood Project

More and better protection is required to protect children and individuals from being preyed on and stalked through online websites and media. Its everyone’s responsibility to talk with our children to make them aware of the hazards to stop another young child from committing suicide like Amanda Todd. My hat goes off to her Mom for trying to get her and her daughter’s message out to spare other children. Learn and join the Red Hood Project movement. Thanks, MB.

Argentina, Brazil, USA: The Rise of the Crazy Ants

Another bug to watch out for. Click here to read the full article.

Lots of Recycling Ideas

I love suggestions like these and I feel you can never have enough suggestions. Please share with others. Click here for the link.